skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chain, Patrick_S G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morchellaspecies have considerable significance in terrestrial ecosystems, exhibiting a range of ecological lifestyles along the saprotrophism-to-symbiosis continuum. However, the mitochondrial genomes of these ascomycetous fungi have not been thoroughly studied, thereby impeding a comprehensive understanding of their genetic makeup and ecological role. In this study, we analysed the mitogenomes of 30Morchellaceaespecies, including yellow, black, blushing and false morels. These mitogenomes are either circular or linear DNA molecules with lengths ranging from 217 to 565 kbp and GC content ranging from 38% to 48%. Fifteen core protein-coding genes, 28–37tRNAgenes and 3–8rRNAgenes were identified in theseMorchellaceaemitogenomes. The gene order demonstrated a high level of conservation, with thecox1gene consistently positioned adjacent to thernSgene andcobgene flanked byaptgenes. Some exceptions were observed, such as the rearrangement ofatp6andrps3inMorchella importunaand the reversed order ofatp6andatp8in certain morel mitogenomes. However, the arrangement of thetRNAgenes remains conserved. We additionally investigated the distribution and phylogeny of homing endonuclease genes (HEGs) of the LAGLIDADG (LAGs) and GIY-YIG (GIYs) families. A total of 925 LAG and GIY sequences were detected, with individual species containing 19–48HEGs. These HEGs were primarily located in thecox1,cob,cox2andnad5introns and their presence and distribution displayed significant diversity amongst morel species. These elements significantly contribute to shaping their mitogenome diversity. Overall, this study provides novel insights into the phylogeny and evolution of theMorchellaceae. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  2. Free, publicly-accessible full text available December 1, 2026